Материал высоковольтного оборудования определяет его электрические, механические и термические свойства, что влияет на надежность, долговечность и безопасность эксплуатации. Правильный выбор материала важен для обеспечения оптимальной работы устройства в различных условиях эксплуатации.
Композитные материалы сочетают в себе свойства нескольких компонентов, обеспечивая высокую прочность, устойчивость к коррозии и хорошие изоляционные характеристики. Они легки и долговечны, что делает их идеальными для использования в условиях повышенной влажности и загрязненности. Рекомендуется для оборудования, эксплуатируемого в агрессивных средах.
Стекло обладает отличными изоляционными свойствами и высокой устойчивостью к температурным перепадам. Оно не подвержено коррозии, однако хрупкость стекла может быть ограничивающим фактором. Рекомендуется для применения в условиях, где важна высокая изоляция и минимальное механическое воздействие.
Фарфор является традиционным материалом для высоковольтного оборудования благодаря своей высокой механической прочности и отличным изоляционным свойствам. Он устойчив к атмосферным воздействиям и химическим веществам. Рекомендуется для использования в стандартных условиях эксплуатации, однако требует осторожного обращения из-за хрупкости.
Полимеры обладают высокой устойчивостью к воздействию окружающей среды, легкостью и гибкостью в производстве. Они обеспечивают хорошие изоляционные свойства и долговечность. Рекомендуется для использования в условиях, требующих высокой механической и химической стойкости.
Керамические материалы характеризуются высокой термостойкостью, механической прочностью и отличными изоляционными свойствами. Они устойчивы к химическим воздействиям и коррозии. Рекомендуется для применения в условиях высоких температур и агрессивных сред.
Силиконовые материалы обладают высокой гибкостью, устойчивостью к ультрафиолетовому излучению и экстремальным температурам. Они обеспечивают отличную изоляцию и долговечность. Рекомендуется для использования в условиях экстремальных температурных перепадов и высокой влажности.
Полиэтилен отличается высокой химической стойкостью, гибкостью и хорошими изоляционными свойствами. Он легок и устойчив к механическим повреждениям. Рекомендуется для использования в условиях, требующих высокой гибкости и устойчивости к химическим воздействиям.
Кремнийорганическая оболочка сочетает в себе свойства силикона и органических соединений, обеспечивая отличную термостойкость, гибкость и изоляционные характеристики. Она устойчива к воздействию ультрафиолетового излучения и химических веществ. Рекомендуется для использования в условиях повышенной влажности и экстремальных температурных перепадов.
Исполнение:
Изолятор штыревой
Свойство "Исполнение" в рубрике "Высоковольтное оборудование" определяет конструктивные особенности и назначение изоляционных компонентов, используемых для обеспечения электрической изоляции и механической поддержки в высоковольтных системах. Правильный выбор исполнения изолятора критически важен для надежности и безопасности работы электрических систем.
Изолятор опорный: Опорные изоляторы устанавливаются на опоры и предназначены для поддержания проводов в заданном положении. Они выдерживают значительные механические и электрические нагрузки. Рекомендуется выбирать опорные изоляторы для линий электропередач и распределительных устройств, где требуется высокая механическая прочность и стабильность.
Изолятор подвесной: Подвесные изоляторы используются для поддержания проводов в подвешенном состоянии. Они обеспечивают электрическую изоляцию и механическую поддержку, часто применяются в линиях электропередач. Рекомендуется использовать подвесные изоляторы в условиях, где важна гибкость и возможность компенсации механических напряжений.
Изолятор штыревой: Штыревые изоляторы предназначены для установки на штыри и используются для поддержки проводов. Они часто применяются в распределительных сетях и обеспечивают надежную изоляцию и механическую поддержку. Выбор штыревых изоляторов рекомендуется для сетей с умеренными механическими нагрузками.
Изолятор натяжной: Натяжные изоляторы используются для натяжения проводов в линиях электропередач. Они обеспечивают высокую механическую прочность и надежную изоляцию. Рекомендуется выбирать натяжные изоляторы для участков линий, где провода подвергаются значительным механическим натяжениям.
Изолятор проходной: Проходные изоляторы предназначены для изоляции и поддержки токоведущих частей, проходящих через стены или перекрытия. Они обеспечивают высокую степень изоляции и механическую прочность. Рекомендуется использовать проходные изоляторы в распределительных устройствах и трансформаторных подстанциях.
Тяги изолирующие: Изолирующие тяги используются для соединения и поддержки различных элементов высоковольтных конструкций. Они обеспечивают надежную изоляцию и механическую поддержку, часто применяются в линиях электропередач и распределительных устройствах. Выбор изолирующих тяг рекомендуется для систем, где требуется высокая степень гибкости и адаптивности.
Путь утечки — это минимальное расстояние по поверхности изоляционного материала между двумя проводниками или между проводником и заземленной частью, измеряемое в миллиметрах. В высоковольтном оборудовании путь утечки является критически важным параметром, поскольку он определяет способность изоляционного материала противостоять поверхностным электрическим разрядам и загрязнениям, что напрямую влияет на надежность и безопасность работы устройства.
Путь утечки 400 мм обеспечивает достаточную изоляцию для большинства стандартных условий эксплуатации высоковольтного оборудования. Рекомендуется для использования в средах с умеренной влажностью и загрязнением.
Путь утечки 391 мм близок к 400 мм и может использоваться в аналогичных условиях. Однако, в случае высоких требований к надежности, предпочтительно выбирать значения с большим запасом.
Путь утечки 1020 мм предоставляет значительно большую защиту от поверхностных разрядов и загрязнений. Рекомендуется для использования в условиях высокой влажности, сильного загрязнения и в критически важных приложениях, где надежность имеет первостепенное значение.
Путь утечки 700 мм является хорошим компромиссом между стоимостью и уровнем защиты. Подходит для использования в условиях средней загрязненности и влажности.
Путь утечки 315 мм обеспечивает базовый уровень изоляции. Рекомендуется для использования в условиях с низкой влажностью и минимальным загрязнением. В более сложных условиях может потребоваться дополнительная защита.
Путь утечки 390 мм близок к 400 мм и может использоваться в аналогичных условиях. Однако, как и в случае с 391 мм, рекомендуется выбирать значения с большим запасом для повышения надежности.
Путь утечки 180 мм является минимальным среди представленных значений и обеспечивает ограниченную защиту. Рекомендуется использовать только в условиях с очень низкими требованиями к изоляции и в контролируемых средах.
Путь утечки 660 мм обеспечивает высокий уровень защиты и может использоваться в условиях с повышенной влажностью и загрязнением, но не столь экстремальных, как для значений свыше 1000 мм.
Путь утечки 330 мм обеспечивает базовый уровень изоляции, схожий с 315 мм. Рекомендуется для использования в условиях с низкой влажностью и минимальным загрязнением. В более сложных условиях может потребоваться дополнительная защита.
Тип изделия определяется функциональным назначением и конструктивными особенностями высоковольтного оборудования, используемого в энергетических системах для передачи, распределения и преобразования электрической энергии. Правильный выбор типа изделия влияет на безопасность, надежность и эффективность работы всей системы.
Трансформатор тока — устройство, предназначенное для преобразования высокого тока в более низкий, удобный для измерения, защиты и управления. Влияет на точность измерений и безопасность эксплуатации. Рекомендуется выбирать в зависимости от номинального тока и класса точности, а также периодически проверять на предмет перегрева и износа изоляции.
Трансформатор напряжения — предназначен для преобразования высокого напряжения в низкое, пригодное для измерения и релейной защиты. Влияет на точность измерений и надежность защиты. Выбор зависит от номинального напряжения и класса точности. Регулярная проверка и калибровка необходимы для поддержания точности.
Изолятор — элемент, используемый для электрической изоляции проводников в высоковольтных линиях и оборудовании. Влияет на безопасность и предотвращение коротких замыканий. Рекомендуется выбирать в зависимости от уровня напряжения и условий эксплуатации, включая климатические условия и механические нагрузки.
Изоляторы высоковольтные — специализированные изоляторы, предназначенные для использования в высоковольтных системах. Влияют на надежность и долговечность изоляции. Выбор зависит от уровня напряжения, типа линии (воздушная или кабельная) и условий окружающей среды.
Блок релейной защиты — устройство, предназначенное для автоматического отключения электрической цепи в случае аварийных режимов. Влияет на безопасность и предотвращение повреждений оборудования. Рекомендуется выбирать в зависимости от типа защищаемого оборудования и требуемых функций защиты, таких как токовая, напряженческая или дифференциальная защита.
Трансформатор сухой — трансформатор с изоляцией, выполненной без использования масла, что уменьшает риск возгорания и упрощает обслуживание. Влияет на безопасность и экологичность. Выбор зависит от номинальных параметров и условий эксплуатации. Требует регулярного осмотра на предмет загрязнений и механических повреждений.
Трансформатор измерительный высоковольтный — устройство для точного измерения высоких напряжений и токов. Влияет на точность и надежность измерительных систем. Выбор зависит от требуемого класса точности и номинальных параметров. Регулярная калибровка и проверка необходимы для поддержания точности измерений.
Предохранитель — защитное устройство, предназначенное для разрыва электрической цепи при превышении допустимого тока. Влияет на безопасность и предотвращение повреждений оборудования. Рекомендуется выбирать в зависимости от номинального тока и напряжения, а также условий эксплуатации. Регулярная проверка и замена предохранителей после срабатывания обязательны.
Разъединитель высоковольтный — устройство для отключения и заземления электрических цепей высокого напряжения. Влияет на безопасность и возможность проведения ремонтных работ. Выбор зависит от номинального напряжения, тока и условий эксплуатации. Регулярное техническое обслуживание необходимо для обеспечения надежной работы.
Материал изделия определяет тип материала, из которого изготовлено высоковольтное оборудование. Он влияет на электрические и механические характеристики устройства, а также на его долговечность и устойчивость к внешним воздействиям.
Фарфор - это керамический материал, обладающий высокой электрической изоляцией и устойчивостью к высоким температурам. Он используется в изоляторах и других компонентах, требующих надежной изоляции. Рекомендуется для применения в условиях высоких температур и агрессивных сред.
Резина - эластичный материал с хорошими изоляционными свойствами и устойчивостью к механическим воздействиям. Применяется в кабельных изоляциях и уплотнительных элементах. Рекомендуется для использования в условиях, требующих гибкости и устойчивости к вибрациям.
Пластик - легкий и прочный материал с хорошими изоляционными свойствами. Используется в производстве корпусов и изоляционных элементов. Рекомендуется для применения в условиях, где требуется легкость и устойчивость к коррозии.
Резина кремнийорганическая - материал с высокой термостойкостью и отличными изоляционными свойствами. Применяется в высоковольтных изоляторах и кабельных оболочках. Рекомендуется для использования в условиях высоких температур и повышенной влажности.
Стекло - материал с высокой электрической изоляцией и устойчивостью к химическим воздействиям. Используется в изоляторах и других компонентах, требующих прозрачности и устойчивости к агрессивным средам. Рекомендуется для применения в условиях, где требуется высокая прозрачность и химическая стойкость.
Полимер - синтетический материал с хорошими изоляционными и механическими свойствами. Используется в кабельных оболочках и изоляционных элементах. Рекомендуется для применения в условиях, требующих устойчивости к химическим воздействиям и механическим повреждениям.
Резина, сталь оцинкованная - комбинация материалов, обеспечивающая высокую прочность и изоляционные свойства. Используется в конструкциях, где требуется сочетание гибкости и механической прочности. Рекомендуется для применения в условиях повышенных механических нагрузок.
Пвх (поливинилхлорид) - пластик с хорошими изоляционными свойствами и устойчивостью к химическим воздействиям. Используется в кабельных оболочках и изоляционных элементах. Рекомендуется для применения в условиях, требующих устойчивости к воздействию химических веществ и механическим повреждениям.
Сталь - прочный материал с высокой механической прочностью и устойчивостью к коррозии. Используется в конструктивных элементах и корпусах высоковольтного оборудования. Рекомендуется для применения в условиях, требующих высокой механической прочности и устойчивости к коррозии.
Полиэтилен - пластик с хорошими изоляционными свойствами и устойчивостью к влаге. Используется в кабельных оболочках и изоляционных элементах. Рекомендуется для применения в условиях повышенной влажности и необходимости гибкости.
Предельная нагрузка:
12 кН
Предельная нагрузка — это максимальная сила, которую высоковольтное оборудование может выдержать без повреждений и потери функциональности. Этот параметр критически важен для обеспечения надежности и безопасности работы оборудования в условиях высоких напряжений и токов.
Предельная нагрузка 70 кН: Оборудование с такой предельной нагрузкой подходит для использования в системах, где ожидаются значительные механические нагрузки. Рекомендуется для применения в высоковольтных линиях передачи и распределительных устройствах в промышленных и энергетических комплексах. При выборе оборудования с такой нагрузкой следует учитывать возможность кратковременных перегрузок и обеспечивать соответствующую защиту.
Предельная нагрузка 12.5 кН: Оборудование, рассчитанное на такую нагрузку, предназначено для менее интенсивных условий эксплуатации. Подходит для использования в распределительных сетях и подстанциях среднего размера. При замене оборудования важно убедиться, что новые компоненты имеют аналогичную или большую предельную нагрузку для поддержания надежности системы.
Предельная нагрузка 20 кН: Этот уровень нагрузки подходит для оборудования, используемого в условиях умеренных механических нагрузок. Оптимально для городских распределительных сетей и подстанций. Рекомендуется для систем, где возможны колебания нагрузок, но не превышающие указанный предел.
Предельная нагрузка 8 кН: Оборудование с такой предельной нагрузкой предназначено для легких условий эксплуатации. Подходит для использования в малых распределительных системах и вспомогательных узлах. При выборе оборудования следует учитывать возможность увеличения нагрузки и предусматривать запас по предельной нагрузке.
Предельная нагрузка 7.5 кН: Этот показатель указывает на минимальную допустимую нагрузку для оборудования, применяемого в условиях низких механических нагрузок. Используется в маломощных распределительных сетях и вспомогательных узлах. Важно учитывать возможность увеличения нагрузки и обеспечивать соответствующую защиту.
Предельная нагрузка 12 кН: Оборудование, рассчитанное на такую нагрузку, предназначено для систем с умеренными механическими нагрузками. Подходит для использования в городских и сельских распределительных сетях. При замене оборудования следует убедиться, что новые компоненты имеют аналогичную или большую предельную нагрузку.
Предельная нагрузка 120 кН: Оборудование с такой высокой предельной нагрузкой предназначено для использования в условиях экстремальных механических нагрузок. Применяется в крупных энергетических и промышленных комплексах, где важна высокая надежность и устойчивость к перегрузкам. При выборе оборудования необходимо учитывать возможность кратковременных перегрузок и обеспечивать соответствующую защиту.
Степень загрязнения обозначает уровень загрязнения окружающей среды, в которой эксплуатируется высоковольтное оборудование. Этот параметр критически важен для определения требований к изоляции и защиты оборудования от воздействия загрязнений, которые могут привести к пробою изоляции и отказу оборудования.
Степень загрязнения 1: Оборудование эксплуатируется в среде с очень низким уровнем загрязнения. В таких условиях воздух чистый, и вероятность появления токопроводящих загрязнений минимальна. Рекомендуется использовать минимальные защитные меры и стандартную изоляцию.
Степень загрязнения 2: Оборудование эксплуатируется в среде с низким уровнем загрязнения. В таких условиях возможно появление некондуктивных загрязнений, которые могут стать токопроводящими при конденсации влаги. Рекомендуется использование умеренных защитных мер и усиленной изоляции для предотвращения пробоев.
Степень загрязнения 3: Оборудование эксплуатируется в среде с умеренным уровнем загрязнения. В таких условиях могут присутствовать токопроводящие загрязнения в виде пыли или конденсата. Рекомендуется использование усиленной изоляции и защитных покрытий для предотвращения пробоев и отказов оборудования.
Степень загрязнения 4: Оборудование эксплуатируется в среде с высоким уровнем загрязнения. В таких условиях присутствуют значительные токопроводящие загрязнения, которые могут серьезно повлиять на работу оборудования. Рекомендуется использование максимально усиленной изоляции, герметичных корпусов и регулярное обслуживание для предотвращения отказов и обеспечения надежной работы.
Номинальное напряжение:
20 кВ
Номинальное напряжение — это максимальное рабочее напряжение, на которое рассчитано высоковольтное оборудование. Оно определяет условия эксплуатации и безопасность работы устройства. Выбор номинального напряжения должен соответствовать требованиям системы электроснабжения и характеристикам нагрузки.
10 кВ — используется в распределительных сетях среднего напряжения. Подходит для питания промышленных и крупных коммерческих объектов. При выборе оборудования на 10 кВ важно учитывать изоляционные характеристики и требования по безопасности.
35 кВ — применяется в распределительных сетях высокого напряжения. Используется для передачи электроэнергии на большие расстояния и для крупных промышленных объектов. Оборудование на 35 кВ требует более строгих мер безопасности и надежной изоляции.
6 кВ — предназначено для распределительных сетей среднего напряжения, часто используется в промышленных предприятиях и городских сетях. Выбор оборудования на 6 кВ должен учитывать требования по изоляции и защиты от перегрузок.
6-35 кВ — диапазон напряжений, охватывающий как средние, так и высокие уровни напряжения. Оборудование, рассчитанное на этот диапазон, должно быть универсальным и подходить для различных условий эксплуатации.
0.66 кВ — низковольтное оборудование, обычно используется в локальных распределительных сетях и для питания небольших промышленных объектов. Требует меньших мер безопасности по сравнению с высоковольтным оборудованием.
10000 В — эквивалент 10 кВ, используется в тех же областях, что и 10 кВ. Выбор оборудования на 10000 В должен учитывать те же факторы, что и для 10 кВ.
6000 В — эквивалент 6 кВ, используется в тех же областях, что и 6 кВ. Выбор оборудования на 6000 В должен учитывать те же факторы, что и для 6 кВ.
20 кВ — используется в распределительных сетях высокого напряжения, часто для крупных промышленных объектов и передачи электроэнергии на средние расстояния. Требует надежной изоляции и строгих мер безопасности.
35000 В — эквивалент 35 кВ, используется в тех же областях, что и 35 кВ. Выбор оборудования на 35000 В должен учитывать те же факторы, что и для 35 кВ.
В — вольт, единица измерения напряжения, используется для низковольтного оборудования.
кВ — киловольт, единица измерения напряжения, используется для высоковольтного оборудования.
Максимальное импульсное напряжение:
125 кВ
Максимальное импульсное напряжение (кВ) - это наибольшее значение напряжения, которое высоковольтное оборудование может выдержать в течение короткого времени (обычно в микросекундном диапазоне) без повреждений. Это критический параметр для оценки надежности и долговечности оборудования при воздействии переходных процессов и импульсных перенапряжений, таких как молнии или коммутационные операции. Выбор оборудования с соответствующим максимальным импульсным напряжением обеспечивает защиту от пробоев и отказов в системе.
70 кВ - подходит для применения в системах с умеренными требованиями к импульсной стойкости. Рекомендуется для использования в средне- и низковольтных сетях, где вероятность сильных импульсных перенапряжений невелика.
100 кВ - обеспечивает достаточную защиту для большинства стандартных высоковольтных применений. Выбор оборудования с таким значением подходит для промышленных и распределительных сетей, где возможны умеренные импульсные перенапряжения.
126 кВ - предназначено для использования в более требовательных условиях, где возможны значительные импульсные напряжения. Рекомендуется для высоковольтных распределительных сетей и подстанций.
125 кВ - аналогично значению 126 кВ, данное значение подходит для высоковольтных систем, требующих повышенной импульсной стойкости. Выбор оборудования с таким параметром обеспечивает дополнительную надежность в условиях высоких импульсных нагрузок.
295 кВ - предназначено для самых высоких требований к импульсной стойкости. Рекомендуется для критически важных инфраструктурных объектов и высоковольтных линий электропередач, где возможны экстремальные импульсные напряжения.