Номинальный ток в системах сборных шин определяет максимальное значение тока, которое система может безопасно проводить без перегрева или повреждения. Это важный параметр для обеспечения надежности и долговечности электрической системы, а также для предотвращения аварийных ситуаций.
Значение номинального тока 100 А указывает на то, что система сборных шин способна безопасно проводить ток до 100 ампер. Это значение подходит для средних и крупных промышленных установок, где требуется высокая пропускная способность тока. При выборе системы с таким номиналом важно учитывать возможные пиковые нагрузки и соответствие с другими компонентами системы.
Значение номинального тока 125 А означает, что система может выдерживать ток до 125 ампер. Это значение рекомендуется для крупных промышленных объектов и мощных электрических установок. При замене или выборе системы с таким номиналом необходимо убедиться, что все компоненты системы рассчитаны на аналогичные или более высокие значения тока.
Значение номинального тока 63 А указывает на способность системы проводить ток до 63 ампер. Это значение часто используется в небольших промышленных и коммерческих установках. При выборе системы с таким номиналом следует учитывать возможные будущие расширения и нагрузки.
Значение номинального тока 50 А означает, что система может безопасно проводить ток до 50 ампер. Это значение подходит для небольших коммерческих объектов и специализированных установок. При замене системы важно учитывать текущие и будущие потребности в электропитании.
Значение номинального тока 40 А указывает на то, что система может выдерживать ток до 40 ампер. Это значение подходит для небольших коммерческих и жилых объектов. При выборе системы важно учитывать возможные пиковые нагрузки и соответствие с другими компонентами системы.
Значение номинального тока 80 А означает, что система может безопасно проводить ток до 80 ампер. Это значение подходит для средних промышленных и коммерческих объектов. При замене или выборе системы важно учитывать возможные будущие расширения и нагрузки.
Значение номинального тока 32 А указывает на способность системы проводить ток до 32 ампер. Это значение часто используется в небольших жилых и коммерческих установках. При выборе системы с таким номиналом следует учитывать возможные будущие расширения и нагрузки.
Значение номинального тока 16 А означает, что система может безопасно проводить ток до 16 ампер. Это значение подходит для небольших жилых объектов и отдельных электрических цепей. При замене системы важно учитывать текущие и будущие потребности в электропитании.
Значение номинального тока 25 А указывает на способность системы проводить ток до 25 ампер. Это значение часто используется в небольших коммерческих и жилых установках. При выборе системы с таким номиналом следует учитывать возможные будущие расширения и нагрузки.
Значение номинального тока 250 А означает, что система может выдерживать ток до 250 ампер. Это значение рекомендуется для крупных промышленных объектов и мощных электрических установок. При замене или выборе системы с таким номиналом необходимо убедиться, что все компоненты системы рассчитаны на аналогичные или более высокие значения тока.
Напряжение в системах сборных шин определяет уровень электрического потенциала, который может быть передан через систему. Оно влияет на выбор оборудования, изоляционных материалов и безопасность эксплуатации. Правильный выбор напряжения обеспечивает надежную и эффективную работу системы сборных шин, минимизирует потери энергии и снижает риск аварийных ситуаций.
Напряжение 380 В используется в промышленных и коммерческих системах для питания оборудования средней мощности. Это стандартное напряжение для трехфазных систем, обеспечивающее баланс между эффективностью и безопасностью.
Напряжение 1000 В применяется в системах, где требуется передача энергии на большие расстояния или для питания мощных промышленных установок. Высокое напряжение позволяет снизить ток и, соответственно, уменьшить потери энергии.
Напряжение 220 В широко используется в бытовых и некоторых коммерческих приложениях. Оно является стандартным для однофазных систем и обеспечивает безопасное и эффективное питание для большинства бытовых приборов.
Напряжение 690 В применяется в специализированных промышленных установках, где требуется высокая мощность и надежность. Это напряжение часто используется в системах с высокой степенью автоматизации и сложными электрическими нагрузками.
Напряжение 660 В используется в промышленности для питания оборудования с высокой мощностью. Оно обеспечивает эффективную передачу энергии и минимизирует потери на длинных линиях.
Напряжение 12 В используется в системах с низким энергопотреблением, таких как системы управления и сигнализации. Это безопасное напряжение, которое минимизирует риск поражения электрическим током.
Напряжение 1900 В применяется в специализированных промышленных и энергетических установках. Высокое напряжение позволяет эффективно передавать энергию на большие расстояния и снижать потери.
Напряжение 2400 В используется в энергосистемах, где требуется передача энергии на большие расстояния с минимальными потерями. Это напряжение часто применяется в распределительных сетях и крупных промышленных установках.
Напряжение 1600 В используется в промышленных системах, где требуется высокая мощность и надежность. Оно обеспечивает эффективную передачу энергии и минимизирует потери.
Напряжение 3600 В применяется в высоковольтных системах для передачи энергии на большие расстояния. Это напряжение позволяет значительно снизить потери и повысить эффективность энергопередачи.
Тип изделия:
Коробка распределительная
Тип изделия в системах сборных шин определяет конструктивные и функциональные особенности конкретного компонента, такого как шина, соединитель, изолятор или аксессуар. Правильный выбор типа изделия влияет на надежность, безопасность и эффективность работы всей системы. При выборе типа изделия следует учитывать параметры нагрузки, условия эксплуатации и совместимость с другими компонентами системы. Замена типа изделия должна производиться с учетом технических характеристик и рекомендаций производителя для обеспечения оптимальной работы системы.
Способ монтажа:
Монтажная плата
Способ монтажа определяет метод установки систем сборных шин, что влияет на удобство монтажа, эксплуатационные характеристики и совместимость с другими элементами электрической системы. От правильного выбора способа монтажа зависит надежность и безопасность электрической установки.
DIN-рейка – это стандартный метод монтажа, при котором оборудование крепится на металлическую рейку стандарта DIN. Этот способ обеспечивает простоту установки и замену компонентов, а также совместимость с широким ассортиментом оборудования.
Монтажная плата предполагает крепление систем сборных шин на специальную монтажную плату. Этот метод позволяет гибко размещать компоненты и обеспечивает хорошую устойчивость конструкции.
Навесной способ монтажа используется для установки систем сборных шин на вертикальные поверхности с помощью крепежных элементов. Этот метод подходит для экономии пространства и удобного доступа к оборудованию.
Монтаж на поверхность предполагает крепление систем сборных шин непосредственно на плоскую поверхность. Это обеспечивает стабильность и надежность установки, но требует точного выравнивания и подготовки поверхности.
Монтаж на шинопровод предусматривает установку систем сборных шин непосредственно на шинопровод, что обеспечивает компактное и эффективное распределение электроэнергии. Этот способ удобен для интеграции в существующие электрические сети.
Настенный монтаж подразумевает крепление систем сборных шин на стену. Этот способ экономит пространство и позволяет легко интегрировать систему в уже существующие конструкции.
Монтаж на аппарат предполагает крепление систем сборных шин непосредственно на электрическое оборудование. Это обеспечивает минимальные потери электропередачи и компактное размещение компонентов.
DIN-рейка/Монтажная плата – комбинированный способ монтажа, который позволяет использовать как DIN-рейку, так и монтажную плату. Это обеспечивает максимальную гибкость при установке и замене компонентов.
Монтаж на устройство предполагает крепление систем сборных шин непосредственно на электрическое или электронное устройство, обеспечивая компактность и минимальные потери при передаче электроэнергии.
Накладной монтаж предусматривает установку систем сборных шин на поверхность с помощью накладных креплений. Этот метод удобен для быстрого монтажа и демонтажа, а также для модернизации существующих систем.
Номинальный ток (А) — это максимальный ток, который система сборных шин может проводить без перегрева и повреждений в нормальных эксплуатационных условиях. Влияние на работу устройства: превышение номинального тока может привести к перегреву, повреждению изоляции и потенциальному выходу из строя всей системы. Рекомендации по выбору и замене: при выборе системы сборных шин следует учитывать номинальный ток, исходя из максимальной нагрузки, которую будет обслуживать система. В случае увеличения нагрузки рекомендуется замена на систему с более высоким номинальным током для предотвращения перегрева и обеспечения надежной работы.
Диапазон сечений – это диапазон размеров поперечного сечения проводников, используемых в системах сборных шин. Он определяет максимальную и минимальную толщину проводников, которые могут быть использованы в конкретной системе. Влияние на работу устройства заключается в том, что правильный выбор сечения обеспечивает оптимальную проводимость и минимальные потери энергии. Рекомендации по выбору: при подборе сечения необходимо учитывать токовую нагрузку, длину проводника и условия охлаждения. Замена проводников на неподходящие по сечению может привести к перегреву, повышенным потерям энергии и возможным аварийным ситуациям.
Сфера применения:
для разветвления проводов и кабелей
Сфера применения систем сборных шин охватывает различные области, включая промышленные предприятия, коммерческие здания, инфраструктурные объекты и энергетические установки. Эти системы используются для распределения электрической энергии с высокой надежностью и эффективностью. Влияние на работу устройства заключается в обеспечении стабильного и безопасного электроснабжения, минимизации потерь энергии и повышении эксплуатационной гибкости. При выборе системы сборных шин рекомендуется учитывать специфику объекта, требуемую нагрузку, условия эксплуатации и возможности масштабирования. Замена системы сборных шин может потребоваться при модернизации объекта, увеличении потребляемой мощности или изменении требований к электроснабжению.
Количество контактов в системах сборных шин определяет количество точек подключения, доступных для различных электрических и электронных компонентов. Это свойство важно при планировании и проектировании электрических систем, так как оно влияет на гибкость и масштабируемость всей системы. Выбор правильного количества контактов зависит от требований конкретной установки и будущих планов по расширению.
Системы сборных шин с 4 контактами подходят для простых и небольших установок, где требуется минимальное количество подключений. Они идеально подходят для базовых приложений и начальных этапов проектирования.
Системы с 6 контактами обеспечивают немного больше гибкости по сравнению с 4-контактными системами и могут использоваться в небольших проектах, требующих дополнительных подключений.
Системы с 8 контактами предлагают умеренное количество точек подключения, подходящее для средних по сложности проектов. Они обеспечивают достаточную гибкость для большинства стандартных применений.
Системы с 10 контактами обеспечивают еще большую гибкость и возможности для подключения дополнительных компонентов. Они хорошо подходят для более сложных и масштабируемых проектов.
Системы с 12 контактами подходят для более сложных установок, где требуется значительное количество подключений. Они обеспечивают достаточную гибкость и возможности для расширения системы.
Системы с 14 контактами предоставляют еще больше возможностей для сложных проектов, требующих большого количества подключений и высокой степени масштабируемости.
Системы с 16 контактами обеспечивают высокий уровень гибкости и масштабируемости, подходя для сложных и крупных проектов с множеством подключений.
Системы с 20 контактами предназначены для крупных и сложных установок, предлагая значительное количество точек подключения и возможность легкого расширения системы.
Системы с 24 контактами обеспечивают максимальную гибкость и возможности для подключения большого количества компонентов. Они идеальны для очень крупных и сложных проектов.
Системы с 54 контактами предназначены для самых сложных и масштабных установок, требующих максимального количества подключений и высокой степени масштабируемости. Их использование рекомендуется в промышленных и высокотехнологичных проектах.
Общ. количество соединений:
4
Общее количество соединений в системе сборных шин определяет число точек, в которых электрические цепи могут быть подключены к шинам. Это ключевой параметр, влияющий на гибкость и масштабируемость системы, а также на её способность интегрироваться в более сложные электрические схемы. Выбор правильного количества соединений зависит от специфических требований проекта и планируемого расширения системы.
Система с 8 соединениями подходит для средних по сложности проектов, обеспечивая достаточную гибкость для большинства стандартных применений.
12 соединений обеспечивают повышенную гибкость и возможность подключения большего числа цепей, что полезно для более сложных систем и будущего расширения.
Система с 6 соединениями подходит для менее сложных проектов, где требуется ограниченное количество подключений.
Одно соединение указывает на минимально возможное количество подключений, что может быть полезно для очень простых или специализированных приложений.
14 соединений предлагают высокую степень гибкости и возможность интеграции большого количества цепей, что подходит для сложных и масштабируемых систем.
Система с 10 соединениями обеспечивает баланс между гибкостью и сложностью, подходя для большинства стандартных и некоторых более сложных проектов.
Система с 4 соединениями предназначена для простых проектов с ограниченными требованиями к подключению.
Два соединения подходят для очень простых систем, где требуется минимальное количество подключений.
20 соединений предоставляют максимальную гибкость и возможность для интеграции в очень сложные и масштабируемые системы.
22 соединения предлагают наибольшую гибкость и возможность подключения, подходя для самых сложных проектов с высокими требованиями к масштабируемости.
Количество соединений > 25 мм:
4
Количество соединений > 25 мм указывает на количество точек подключения в системе сборных шин, которые имеют диаметр более 25 мм. Это свойство важно для понимания возможностей системы по подключению крупных проводников и распределению больших токов. Правильный выбор этого параметра обеспечивает надежность и эффективность работы электрической сети.
0.01 - Указывает на минимальное количество соединений, что может быть применимо в специализированных или экспериментальных системах, где требуется только одно такое соединение.
1 - Означает наличие одного соединения, подходящего для простых систем с минимальными требованиями по подключению крупных проводников.
2 - Два соединения обеспечивают возможность подключения двух крупных проводников, что подходит для небольших распределительных сетей.
3 - Три соединения позволяют более гибко распределять нагрузку и подключать дополнительные устройства в средних по размеру системах.
4 - Четыре соединения обеспечивают дополнительную гибкость и возможность подключения нескольких крупных потребителей или распределительных устройств.
6 - Шесть соединений подходят для более сложных систем, требующих подключения нескольких крупных проводников и распределения больших токов.
8 - Восемь соединений обеспечивают высокую степень гибкости и надежности для крупных распределительных систем.
10 - Десять соединений позволяют подключать множество крупных проводников, что идеально для масштабных систем с высокими требованиями по распределению тока.
12 - Двенадцать соединений предоставляют максимальную гибкость и возможность подключения большого количества устройств в очень крупных системах.
14 - Четырнадцать соединений обеспечивают максимальную надежность и возможность подключения множества крупных проводников, что подходит для самых сложных и крупных распределительных систем.