Шина гибкая медная SV 10х63х1 2000мм Rittal 3579005
Шина гибкая медная SV 10х63х1 2000мм Rittal 3579005
Шина гибкая медная SV 10х63х1 2000мм Rittal 3579005

Товарные предложения:

Шина гибкая медная SV 10х63х1 2000мм Rittal 357900503.04.20251 шт. 12 926,59 ₽

шт.
от 1 дня

Условия поставки шины гибкой медной SV 10х63х1 2000мм Rittal 3579005

Купить 1 шт. шина гибкая медная sv 10х63х1 2000ммы rittal 3579005 могут физические июридические лица, по безналичному и наличному расчету, отгрузка производится с пункта выдачи на следующийдень после поступления оплаты.

Доставим на следующий день после оплаты, по Москве и в радиусе 200 км от МКАД, в другие регионы РФ отгружаем транспортными компаниями.

Цена шины гибкой медной SV 10х63х1 2000мм Rittal 3579005 зависит от общей суммы заказа, на сайте указана оптовая цена.

Описание

Характеристики

Описание

Шина гибкая медная SV 10х63х1 2000мм Rittal 3579005 - это гибкая медная шина размером 10x63 мм (10x63x1 мм) и длиной 2000 мм. Она имеет несколько преимуществ, которые делают ее отличным выбором для различных приложений.

Одним из преимуществ этой шины является ее толщина в 10 мм, что обеспечивает высокую прочность и надежность. Это особенно важно при передаче больших номинальных рабочих токов, так как шина способна выдерживать нагрузку до 1610 А.

Дополнительным преимуществом является наличие пластинчатой конструкции. Это позволяет легко монтировать и подключать шину к различным устройствам и оборудованию. Количество пластин составляет 1, что обеспечивает простоту и удобство в использовании.

Шина гибкая медная SV 10х63х1 2000мм Rittal 3579005 идеально подходит для использования в различных электрических системах, включая электрощитовое оборудование, промышленные установки и другие приложения, где требуется надежная и эффективная передача электрического тока.

Характеристики c описанием

Гибкий:

Нет

Свойство "Гибкий" в системах сборных шин указывает на способность шины изгибаться и адаптироваться к различным формам и конфигурациям без повреждения. Это свойство важно при проектировании и установке систем в условиях ограниченного пространства или сложной геометрии. Отсутствие гибкости означает, что шина является жесткой и не может изгибаться. Такие шины подходят для установки в прямолинейных и предсказуемых трассах, где нет необходимости в изменении формы. Они обычно обладают высокой прочностью и устойчивостью к механическим повреждениям, но требуют более тщательного планирования маршрута прокладки. Рекомендуется использовать в местах с достаточным пространством и минимальными изгибами. Гибкие шины способны изгибаться и адаптироваться к различным конфигурациям и углам, что делает их идеальными для установки в ограниченных или сложных пространствах. Они облегчают монтаж и позволяют сократить время на установку. Однако гибкие шины могут быть менее устойчивыми к механическим повреждениям и требуют дополнительных мер по защите и фиксации. Рекомендуется использовать в условиях, где требуется частая адаптация формы или в сложных трассах.

Луженый:

Нет

Луженый — это свойство, указывающее на наличие или отсутствие покрытия из олова на контактных поверхностях системы сборных шин. Лужение применяется для улучшения коррозионной стойкости и электрической проводимости контактов. Нет — отсутствие луженого покрытия на контактных поверхностях. Влияние: контакты без лужения могут быть подвержены коррозии, что снижает их долговечность и проводимость. Рекомендации: выбирать системы без лужения можно в условиях низкой влажности и отсутствия агрессивных сред. Замена: при появлении признаков коррозии рекомендуется замена контактных элементов или применение антикоррозийных средств. Да — наличие луженого покрытия на контактных поверхностях. Влияние: луженые контакты обладают повышенной коррозионной стойкостью и улучшенной проводимостью, что увеличивает надежность и долговечность системы. Рекомендации: предпочтительно использовать в условиях повышенной влажности или агрессивных сред. Замена: при повреждении луженого слоя рекомендуется замена или повторное лужение контактных поверхностей.

Толщина:

10 мм

Толщина является критическим параметром для систем сборных шин, определяющим их механическую прочность, тепловую устойчивость и электрическую проводимость. Толщина шин измеряется в миллиметрах (мм) и непосредственно влияет на их способность выдерживать механические нагрузки и токовые нагрузки, а также на их термическую стабильность. Подбор оптимальной толщины зависит от конкретных требований системы, таких как номинальные токи, условия эксплуатации и требования по безопасности. Толщина 9 мм обеспечивает высокую механическую прочность и хорошую тепловую устойчивость. Рекомендуется для систем с высокими токовыми нагрузками и в условиях интенсивной эксплуатации, где важна долговечность и надежность. Толщина 5 мм подходит для систем со средними токовыми нагрузками. Обеспечивает баланс между механической прочностью и гибкостью, что делает её универсальным выбором для многих применений. Толщина 12 мм предлагает максимальную механическую прочность и тепловую устойчивость среди рассмотренных значений. Рекомендуется для критически важных систем, где необходима высокая надежность и долговечность при экстремальных нагрузках. Толщина 6 мм обеспечивает хорошую механическую прочность и тепловую устойчивость для систем со средними и высокими токовыми нагрузками. Оптимальный выбор для большинства стандартных применений. Толщина 4 мм подходит для систем с низкими токовыми нагрузками. Обеспечивает достаточную механическую прочность при минимальных требованиях к материалу, что может быть экономически выгодно для менее критичных применений. Толщина 10 мм обеспечивает высокую механическую прочность и тепловую устойчивость. Рекомендуется для систем с высокими токовыми нагрузками и в условиях интенсивной эксплуатации, где важна долговечность и надежность. Толщина 3 мм подходит для систем с низкими токовыми нагрузками и минимальными механическими требованиями. Используется в условиях, где важна экономия материала и веса. Толщина 8 мм обеспечивает хорошую механическую прочность и тепловую устойчивость для систем со средними и высокими токовыми нагрузками. Оптимальный выбор для большинства стандартных применений. Толщина 2 мм подходит для систем с минимальными токовыми нагрузками и механическими требованиями. Используется в условиях, где важна экономия материала и веса. Толщина 11 мм обеспечивает высокую механическую прочность и тепловую устойчивость. Рекомендуется для систем с высокими токовыми нагрузками и в условиях интенсивной эксплуатации, где важна долговечность и надежность.

Тип изделия:

Шина медная

Тип изделия в системах сборных шин определяет конструктивные и функциональные особенности конкретного компонента, такого как шина, соединитель, изолятор или аксессуар. Правильный выбор типа изделия влияет на надежность, безопасность и эффективность работы всей системы. При выборе типа изделия следует учитывать параметры нагрузки, условия эксплуатации и совместимость с другими компонентами системы. Замена типа изделия должна производиться с учетом технических характеристик и рекомендаций производителя для обеспечения оптимальной работы системы.

Пластинчатая:

Да

Свойство "Пластинчатая" в системах сборных шин указывает на наличие или отсутствие пластинчатой конструкции, которая влияет на распределение электрических нагрузок и тепловых характеристик системы. Системы сборных шин с пластинчатой конструкцией обеспечивают более равномерное распределение электрических нагрузок и улучшенные тепловые характеристики. Это позволяет снизить вероятность перегрева и повысить общую надежность системы. Рекомендуется использовать пластинчатые системы в высоконагруженных и критически важных приложениях, где стабильность и долговечность являются приоритетами. Системы сборных шин без пластинчатой конструкции могут быть менее эффективными в распределении электрических нагрузок и тепловых характеристик. Такие системы могут быть более подвержены перегреву и требуют более частого технического обслуживания. Они могут быть подходящими для менее критичных приложений, где нагрузка и требования к надежности не столь высоки.

Способ монтажа:

Монтажная плата

Способ монтажа определяет метод установки систем сборных шин, что влияет на удобство монтажа, эксплуатационные характеристики и совместимость с другими элементами электрической системы. От правильного выбора способа монтажа зависит надежность и безопасность электрической установки. DIN-рейка – это стандартный метод монтажа, при котором оборудование крепится на металлическую рейку стандарта DIN. Этот способ обеспечивает простоту установки и замену компонентов, а также совместимость с широким ассортиментом оборудования. Монтажная плата предполагает крепление систем сборных шин на специальную монтажную плату. Этот метод позволяет гибко размещать компоненты и обеспечивает хорошую устойчивость конструкции. Навесной способ монтажа используется для установки систем сборных шин на вертикальные поверхности с помощью крепежных элементов. Этот метод подходит для экономии пространства и удобного доступа к оборудованию. Монтаж на поверхность предполагает крепление систем сборных шин непосредственно на плоскую поверхность. Это обеспечивает стабильность и надежность установки, но требует точного выравнивания и подготовки поверхности. Монтаж на шинопровод предусматривает установку систем сборных шин непосредственно на шинопровод, что обеспечивает компактное и эффективное распределение электроэнергии. Этот способ удобен для интеграции в существующие электрические сети. Настенный монтаж подразумевает крепление систем сборных шин на стену. Этот способ экономит пространство и позволяет легко интегрировать систему в уже существующие конструкции. Монтаж на аппарат предполагает крепление систем сборных шин непосредственно на электрическое оборудование. Это обеспечивает минимальные потери электропередачи и компактное размещение компонентов. DIN-рейка/Монтажная плата – комбинированный способ монтажа, который позволяет использовать как DIN-рейку, так и монтажную плату. Это обеспечивает максимальную гибкость при установке и замене компонентов. Монтаж на устройство предполагает крепление систем сборных шин непосредственно на электрическое или электронное устройство, обеспечивая компактность и минимальные потери при передаче электроэнергии. Накладной монтаж предусматривает установку систем сборных шин на поверхность с помощью накладных креплений. Этот метод удобен для быстрого монтажа и демонтажа, а также для модернизации существующих систем.

Гарантийный срок:

18 мес

Гарантийный срок для систем сборных шин указывает на период, в течение которого производитель обязуется устранять любые дефекты, возникшие в процессе эксплуатации оборудования. Это важный показатель, который влияет на надежность и долговечность системы, а также на уровень доверия к производителю. Гарантийный срок измеряется в месяцах и может варьироваться в зависимости от модели и производителя. Гарантийный срок в 12 месяцев означает, что производитель обязуется устранять дефекты в течение одного года. Это минимальный стандартный срок для большинства систем сборных шин, обеспечивающий базовую уверенность в надежности оборудования. Рекомендуется для проектов с ограниченным бюджетом или временными установками. Гарантийный срок в 18 месяцев предоставляет дополнительную уверенность в качестве и надежности системы по сравнению с минимальным стандартом. Подходит для среднесрочных проектов, где важно иметь небольшую дополнительную защиту от производственных дефектов. Гарантийный срок в 24 месяца (или "24 месяца") является распространенным выбором для систем сборных шин, обеспечивая два года защиты от дефектов. Это оптимальный баланс между стоимостью и длительностью гарантийного обслуживания, подходящий для большинства применений. Гарантийный срок в 36 месяцев предоставляет три года защиты, что делает его подходящим для долгосрочных проектов и критически важных систем, где надежность является ключевым фактором. Это также может свидетельствовать о высоком качестве и долговечности оборудования. Гарантийный срок в 60 месяцев означает пять лет защиты, что значительно превышает стандартные сроки и подходит для проектов, требующих длительной эксплуатации без необходимости частой замены или ремонта системы. Это также может указывать на премиальное качество и высокую надежность оборудования. Гарантийный срок в 84 месяца предоставляет семь лет защиты, что является одним из самых длительных гарантийных сроков на рынке. Это идеальный выбор для критически важных и долгосрочных проектов, где максимальная надежность и минимальные эксплуатационные расходы имеют первостепенное значение.

Материал изделия:

Медь

Материал изделия определяет основные характеристики систем сборных шин, такие как проводимость, прочность, устойчивость к коррозии и температурным воздействиям. Выбор материала влияет на надежность и долговечность всей системы, а также на её стоимость и применимость в различных условиях эксплуатации. Медь — это материал с высокой электрической проводимостью, что делает его идеальным для использования в системах сборных шин, где требуется минимизация потерь энергии. Медь также обладает хорошей коррозионной стойкостью, что увеличивает срок службы изделия. Рекомендуется для применения в высоконагруженных электрических сетях и критически важных системах. Латунь — сплав меди и цинка, обладающий хорошей проводимостью и коррозионной стойкостью. Латунь часто используется в системах, где важны механическая прочность и устойчивость к коррозии, но требования к проводимости не столь критичны, как у чистой меди. Пластик — материал, используемый в основном для изоляционных элементов в системах сборных шин. Он не проводит электричество, что позволяет эффективно предотвращать короткие замыкания и утечки тока. Пластик также устойчив к воздействию влаги и химических веществ, что делает его подходящим для использования в агрессивных средах. Алюминий — лёгкий материал с хорошей электрической проводимостью, уступающей только меди. Он также обладает высокой коррозионной стойкостью и хорошей механической прочностью. Алюминий рекомендуется для применения в системах, где важна оптимизация веса и стоимости, например, в воздушных линиях электропередач. Сталь листовая — это материал, обладающий высокой механической прочностью и устойчивостью к механическим повреждениям. Листовая сталь используется в конструктивных элементах систем сборных шин, где важны жесткость и долговечность. Однако её проводимость значительно ниже, чем у меди или алюминия. Сталь — материал, обладающий высокой прочностью и износостойкостью. Используется в конструктивных элементах и корпусах систем сборных шин. Сталь подвержена коррозии, поэтому часто требует дополнительной обработки или покрытия. Металл — общее обозначение, которое может включать в себя различные металлы и сплавы, используемые в системах сборных шин. Конкретные характеристики зависят от выбранного типа металла. Полиэстер — синтетический материал, используемый для изоляции и покрытия элементов систем сборных шин. Он обладает хорошей устойчивостью к химическим воздействиям и ультрафиолетовому излучению. Полиэстер рекомендуется для использования в условиях повышенной влажности и агрессивных сред. Полиамид — синтетический материал, известный своей высокой механической прочностью и устойчивостью к износу. Используется для изготовления изоляционных и конструктивных элементов в системах сборных шин. Полиамид также устойчив к высоким температурам и химическим воздействиям. Сталь нержавеющая — материал, обладающий высокой коррозионной стойкостью и механической прочностью. Используется в системах сборных шин, где требуется долговечность и устойчивость к агрессивным средам, таким как морская вода или химические вещества. Нержавеющая сталь также устойчива к высоким температурам.

Сфера применения:

Промышленность

Сфера применения систем сборных шин охватывает различные области, включая промышленные предприятия, коммерческие здания, инфраструктурные объекты и энергетические установки. Эти системы используются для распределения электрической энергии с высокой надежностью и эффективностью. Влияние на работу устройства заключается в обеспечении стабильного и безопасного электроснабжения, минимизации потерь энергии и повышении эксплуатационной гибкости. При выборе системы сборных шин рекомендуется учитывать специфику объекта, требуемую нагрузку, условия эксплуатации и возможности масштабирования. Замена системы сборных шин может потребоваться при модернизации объекта, увеличении потребляемой мощности или изменении требований к электроснабжению.

Толщина пластины:

10 мм

Толщина пластины в системах сборных шин определяет механическую прочность и тепловую устойчивость токопроводящих элементов. Это критически важный параметр для обеспечения надежности и долговечности системы, а также для минимизации потерь энергии и предотвращения перегрева. Толщина пластины 1 мм обеспечивает базовую механическую прочность и тепловую устойчивость, подходящую для легких и средних нагрузок. Рекомендуется для систем с умеренными токовыми нагрузками и в условиях, где требования к весу и габаритам имеют приоритет. Замена на более толстую пластину может потребоваться при увеличении токовых нагрузок или в условиях повышенной вибрации. Толщина пластины 0.8 мм подходит для легких нагрузок и использования в компактных системах, где важны минимальные габариты и вес. Эта толщина может ограничивать максимальную токовую нагрузку и тепловую устойчивость, поэтому рекомендуется для систем с низкими требованиями к мощности. В случае увеличения нагрузки рекомендуется переход на более толстую пластину. Толщина пластины 5 мм обеспечивает высокую механическую прочность и отличную тепловую устойчивость, что делает её идеальной для тяжелых нагрузок и промышленных применений. Такая толщина минимизирует потери энергии и предотвращает перегрев даже при высоких токах. Рекомендуется для систем, где надежность и долговечность имеют первостепенное значение. Замена на более тонкую пластину может быть оправдана только при значительном снижении нагрузок и требований к прочности.

Количество пластин:

1

Количество пластин в системе сборных шин определяет количество токопроводящих элементов, используемых для распределения электрической энергии. Это свойство напрямую влияет на пропускную способность, эффективность распределения тока и тепловую нагрузку на систему. Правильный выбор количества пластин зависит от требований к мощности, допустимым потерям и условиям эксплуатации. Однопластинные системы обычно используются в маломощных установках, где требуется минимальная пропускная способность и тепловая нагрузка. Рекомендуются для небольших распределительных щитов или локальных систем. Двухпластинные системы подходят для средних нагрузок и обеспечивают лучшую распределенность тока по сравнению с однопластинными системами. Они часто используются в небольших коммерческих и промышленных установках. Трехпластинные системы обеспечивают еще большую пропускную способность и надежность. Рекомендуются для средних и крупных коммерческих объектов, где требуется стабильное распределение тока. Четырехпластинные системы обеспечивают высокую эффективность распределения тока и сниженные тепловые потери. Они подходят для крупных промышленных объектов и сложных распределительных сетей. Системы с пятью пластинами используются в высоконагруженных промышленных установках, где требуется высокая пропускная способность и надежность. Рекомендуются для объектов с высокими требованиями к электроснабжению. Шестипластинные системы обеспечивают еще большую мощность и стабильность, что делает их подходящими для очень крупных промышленных объектов и критических инфраструктур. Восьмипластинные системы предназначены для экстремально высоких нагрузок и максимальной надежности. Используются в крупных энергетических и промышленных комплексах. Десятипластинные системы обеспечивают максимальную пропускную способность и минимальные тепловые потери. Подходят для самых высоконагруженных и критических объектов, таких как электростанции и центры обработки данных. Одиннадцатипластинные системы используются в специализированных и высоконагруженных промышленных установках, где требуется максимальная надежность и эффективность распределения тока. Двенадцатипластинные системы предоставляют наивысшую пропускную способность и эффективность. Рекомендуются для самых критических и высоконагруженных объектов, где отказ системы недопустим.

Номинальный рабочий ток:

1610 А

Номинальный рабочий ток (А) — это максимальный ток, который система сборных шин способна проводить непрерывно при нормальных условиях эксплуатации без перегрева и ухудшения характеристик. Этот параметр напрямую влияет на выбор системы сборных шин для конкретного применения, так как превышение номинального тока может привести к перегреву, повреждению изоляции и снижению срока службы системы. При выборе системы сборных шин необходимо учитывать максимальные токовые нагрузки в сети и выбирать оборудование с запасом по номинальному рабочему току. В случае увеличения нагрузки рекомендуется замена на систему с более высоким номинальным рабочим током для обеспечения надежности и безопасности эксплуатации.